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Allocation for earthquake emergency shelters is a complicated geographic opti-
mization problem because it involves multiple sites, strict constraints, and discrete
feasible domain. Huge solution space makes the problem computationally intractable.
Traditional brute-force methods can obtain exact optimal solutions. However, it is not
sophisticated enough to solve the complex optimization problem with reasonable time
especially in high-dimensional solution space. Artificial intelligent algorithms hold the
promise of improving the effectiveness of location search. This article proposes a mod-
ified particle swarm optimization (PSO) algorithm to deal with the allocation problem
of earthquake emergency shelter. A new discrete PSO and the feasibility-based rule are
incorporated according to the discrete solution space and strict constraints. In addition,
for enhancing search capability, simulated annealing (SA) algorithm is employed to
escape from local optima. The modified algorithm has been applied to the allocation
of earthquake emergency shelters in the Zhuguang Block of Guangzhou City, China.
The experiments have shown that the algorithm can identify the number and locations
of emergency shelters. The modified PSO algorithm shows a better performance than
other hybrid algorithms presented in the article, and is an effective approach for the
allocation problem of earthquake emergency shelters.

Keywords: discrete particle swarm optimization; constraint handling method; simu-
lated annealing; optimal allocation; earthquake emergency shelters

1. Introduction

In recent decades, the population affected by various natural disasters has increased around
the world, especially in disaster-prone cities with dense population (Hainesa et al. 2006,
Srinivasa and Nakagawa 2008). Efficient disaster management plays a critical role in mit-
igating human suffering and damages from natural disasters. Currently, the main research
work in disaster management focuses on transportation for the injured and delivery of
relief material (Yi and Ozdamar 2007, Sheu 2007, 2010, Widerner and Horner 2011),
relief resource allocation (Fiedrich et al. 2000, Rawls and Turnquist 2010), and evacuation
planning under disaster conditions (Pidd et al. 1996, Chen et al. 2006a, Yuan and Han
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1644 F. Hu et al.

2010). But relatively little research has been conducted on shelter planning, which is an
indispensable part of disaster management. Establishing emergency shelters provides great
benefit for postdisaster relief work. About 250,000 people stayed in shelters after the Great
Eastern Japan earthquake,1 making the disaster-affected population much accessible by the
government in rescue operations.

So far, much of the efforts in disaster shelter research have concentrated on the identi-
fication of designing criteria and location requirements (Liu et al. 2010) or on adaptability
assessment (Bradford and Sen 2005, Ma et al. 2005, Ruang et al. 2006). Comparatively,
only few literatures pertain to optimal shelter allocation. Huang et al. (2006) developed a
fuzzy multi-objective model considering coverage maximization and distance balancing;
Saadatseresht et al. (2009) proposed a bi-objective model minimizing maximum distance
and capacity violation; Ng et al. (2010) brought forth a hybrid bi-level model considering
minimizing total evacuation time and individual evacuation time; Li et al. (2008) put for-
ward a model for minimizing the travel cost and keeping spatial continuity with capability
constraint. These literatures have all considered distance and capacity factors, meanwhile
ignoring minimizing the cost of construction and maintenance of shelters. In reality, how-
ever, disaster mitigation funds are often limited, and cost is an important factor to consider
in planning emergency shelters. Moreover, the studies identified above have only consid-
ered large-scale and long-term shelters away from residential zones, with limited reference
to community emergency shelter allocation. Emergency shelters in large urban areas are
small open spaces near residential zones that provide immediate refuge services when dis-
asters strike. They are especially important for areas with very high population density,
such as many large cities in China. In fact, although a highly efficient early warning sys-
tem is in place in Japan, it can only offer a 1 min or even several seconds of response time
in advance of the quakes.2 So the accessibility to available shelters plays an important role
in improving the survival rate in disaster-affected areas.

The model proposed in this article is suitable for solving the optimal allocation problem
of earthquake emergency shelter (OAEES problem) based on community-level units. It not
only takes into account the capability constraint and distance constraint but also considers
cost saving for shelter construction.

The OAEES problem is a complicated geographic optimization problem, because it
involves strict constraints and a huge discrete feasible domain. Traditional brute-force
method can obtain exact optimal solution by enumerating all possible combinations (Li
et al. 2009). Unfortunately, the method cannot solve the problem within a reasonable time.
As state-of-the-art models, artificial intelligent algorithms come into play, because they can
improve the performance of location search by providing a suitable trade-off between solu-
tion quality and computation. In this article, a relatively new particle swarm optimization
(PSO) algorithm is used, which improves effectiveness in solving the OAEES problem.
PSO was first proposed by Kennedy and Eberhart in 1995, based on the metaphor of social
interaction and communication of bird flocking. Similar to genetic algorithm (GA) and
ant colony optimization (ACO), PSO is developed into an important tool for solving dif-
ficult optimization problems. It has powerful search capability by combining local search
and global search (Xia and Wu 2006). Compared with simulated annealing (SA) and other
heuristic algorithms, PSO has much stronger intelligent background. The implementation
of PSO is more convenient than GA due to PSO’s requirement for fewer parameters; and
PSO is relatively easier to comprehend than ACO.

Standard PSO algorithms are easily trapped into local optima during the post-search
period. Hybridization is an effective approach for overcoming this difficulty. It is proven
to be of great robustness and efficiency, with the main merits of making full use of one
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approach to offset the drawbacks of the other and thus being superior to each single method.
Some studies hybridizing PSO with other algorithms have been successfully applied to var-
ious optimization problems. For example, Shi et al. (2003) hybridized PSO and GA to find
global optimum; Fan et al. (2004) incorporated the Nelder-Mead (NM) simplex search
method into PSO for the multimodal function optimization problem; Afshinmanesh et al.
(2005) combined binary coding PSO and artificial immune system to accelerate the con-
vergence process; Shelokar et al. (2007) made a combination of PSO and ACO for highly
non-convex optimization problems; Yin et al. (2007) solved a task allocation problem by
incorporating a hill-climbing heuristic into PSO.

However, PSO has not received much attention for solving geographic optimization
problems. In this article, a modified algorithm based on PSO is proposed, in which three
important methods are hybridized with PSO. First, the OAEES problem is an integer
programming problem whose feasible solution domain is discrete. A new discrete PSO
(NDPSO) algorithm proposed by Pan et al. (2008) is employed, which can let all par-
ticles move all around the discrete search space. Second, the OAEES problem is also
a constrained optimization problem. Accordingly, utilizing constraint-handling technique
becomes ineluctable. Owing to its simple logic, ease to implement, and effectiveness, the
feasibility-based rule proposed by He and Wang (2007a) is used to deal with the con-
strained optimization problem. Third, to enhance the search capability, PSO is hybridized
with SA to escape from local optima and focus computing effort upon the most promis-
ing solutions. Hybrid PSO and SA has been widely used in optimization problems of
other fields (Zhao et al. 2007, Liu et al. 2008, Niknam et al. 2009). In other words,
NDPSO provides the global search ability for discrete-coded particles and the feasibility-
based rule makes all particles have tendency to the feasible solutions, but the DPSO and
feasibility-based rule combination has the shortcoming of premature convergence. SA can
help in converging to the global optimum, although it is sensitive to the initial point
provided by NDPSO. Therefore, the modified PSO algorithm that hybridized NDPSO,
the feasibility-based rule, and SA is proposed to tackle the OAEES problem. Compared
with other hybrid algorithms, the modified PSO algorithm shows great effectiveness, and
the feasible result also demonstrates that the algorithm is viable for solving the OAEES
problem.

2. Standard PSO algorithm

PSO is an evolutionary algorithm based on mimicking simplified social behavior, such
as bird flocking and fish schooling, whose goal is to find an optimal position for several
objectives in a multidimensional space (Kennedy and Eberhart 1995, Eberhart and Shi
2001). In PSO, each intelligent individual searching for an optimal position is called a
particle. Each particle represents a candidate solution that can be evaluated by a preset
evaluation function. Flying in a D-dimensional search space, a particle changes its velocity
dynamically based on its own flying experience and the flying experience of its colleagues.
The PSO algorithm begins with randomly initializing a swarm of particles, then itera-
tively adjusts the flying trajectory of each particle toward its personal best position (called
local optimum) and toward the best particle of swarm (called global optimum), and finally
achieves an optimal solution.

In the D-dimensional search space, the ath particle’s position in the uth generation is
represented as Xa(u) = {xa1(u), xa2(u),. . ., xaD(u)}; similarly, the velocity can be repre-
sented as Va(u) = {Va1(u), Va2(u),. . ., VaD(u)}. The velocity and position of each particle
can be updated according to Formula (1) and Formula (2), respectively:
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1646 F. Hu et al.

vad (u + 1) = ω(u)vad (u) + c1r1
(
X P

a (u) − xad (u)
) + c2r2

(
X G(u) − xad(u)

)
(1)

xad (u + 1) = xad (u) + vad (u + 1) (2)

where A denotes population size and the variable a = 1, 2,. . ., A; U denotes maximum
number of generations and the variable u = 1, 2,. . ., U ; D denotes the dimension of a
particle, the variable d = 1, 2,. . ., D; X p

a and XGdenote local optimum and global optimum;
c1 and c2 are learning factors; r1 and r2 are the uniform random numbers generated between
0 and 1; and ω(u) is inertia weight.

In Formula (1), the first part represents a particle’s inheritance of previous velocity,
reflecting the particle’s confidence with current state of motion; the second part represents
the particle’s cognition, namely, independent thinking; the third part is the social part,
expressing the information sharing and mutual cooperation between particles. Formula
(2) also conveys the information sharing mechanism.

3. Optimal allocation model for earthquake emergency shelters

Before building the model for the OAEES problem, for simplicity two assumptions are
made as follows:

(1) The population of a community is concentrated at its centre point. The residents
prefer to follow the shortest path when they evacuate to the assigned shelter.

(2) The physical locations of all candidate shelters are predetermined and all residents
in a given community can only be assigned to one shelter.

Appropriate shelter allocation is propitious for evacuation in reasonable time and ade-
quate shelter capacity can provide sufficient refuge service for all people in disaster areas.
Therefore, all feasible solutions should comply with the following two strict constraints.

(1) Distance constraint: To ensure safety, it is necessary for residents to evacuate to a
nearby shelter in a short time when disaster happens. Hence, the distance between
each community and its assigned shelter should be within the shelter’s maxi-
mal service distance, which is the most important constraint and should be given
priority.

(2) Capacity constraint: In each shelter, to meet the basic needs for living, the number
of residents should not exceed the maximum capacity of the shelter.

Apart from these two important aspects, shelter allocation should also emphasize cost sav-
ing due to the limits in funding for disaster mitigation. To save the total construction cost
by supposedly having the same construction fee for each shelter, the number of locating
emergency shelters should be minimized after satisfying the two constraints, which is the
objective of the proposed model for the OAEES problem.

The proposed model for the OAEES problem includes the following variables and sets:
M represents the total number of communities in a study area; J denotes the set of commu-
nities and j is community index; Pj denotes the population of community j; N represents the
number of candidate shelters; I denotes the set of candidate shelters and i is shelter index;
Si denotes the area of candidate shelter i; L denotes the smallest refuge area per capita,
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International Journal of Geographical Information Science 1647

which is preset as 1 m2/person; dji represents the length of the shortest path between com-
munity j and candidate shelter i; and Dmax represents the maximum service distance of an
emergency shelter, which is preset as 450 m. The two decision variables are as follows:

Yi =
{

1, the ith candidate shelter is selected as the designated shelter
0, otherwise

Bji =
{

1, the residents in the jth community are assigned to the ith candidate shelter
0, otherwise

minimize Z =
N∑

i=1

Y ∀i = 1, 2, . . . , N (3)

Subject to

M∑
j=1

PjLBji − SiYi ≤ 0 ∀i = 1, 2, . . . , N (4)

djiBji − Dmax ≤ 0 ∀i = 1, 2, . . . , N ∀j = 1, 2, . . . , M (5)

N∑
i=1

BjiYi = 1 ∀j = 1, 2, . . . , M (6)

Bji ∈ (0, 1) Yi ∈ (0, 1) (7)

Formula (3) denotes the objective function and Z denotes the objective function value
(OFV); Formula (4) represents the capacity constraint; Formula (5) denotes the distance
constraint; Formula (6) expresses that all residents in a community can only be assigned
to one shelter; and Formula (7) restricts all the values of decision variables Bji, Yi to the
binary numbers 0 and 1.

4. The modified PSO algorithm

4.1. A new discrete PSO algorithm

Standard PSO algorithm was initially developed for continuous optimization problems,
and its continuous nature prevents it from working with discrete optimization problems.
To overcome this limitation, some discrete methods were put forward. Kennedy and
Eberhart (1997) proposed a binary-coded PSO, in which the binary-valued position of a
particle is generated from its real-valued velocity by employing a sigmoid function with a
random probability. But this method is inconvenient to use due to the encoding and decod-
ing process. Chen et al. (2006b) adopted a quantum DPSO algorithm developed by Yang
et al. (2004) to solve the vehicle routing problem. However, the dimension of particle will
be huge by using the encoding method in this work. Jin et al. (2007) and Xia and Wu
(2006) proposed other DPSO algorithms by rounding off real optimum values to the near-
est integer numbers. But the discrete value near the real optimal value may fall outside the
feasible region and is usually not the optimal solution. Kitayama and Yasuda (2006) created
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1648 F. Hu et al.

a multimodal augmented objective function by treating the discrete variables in terms of
a penalty function. However, the method needs a large amount of computation and has
difficulty in determining whether the sufficient local optima have been found.

To the OAEES problem, the integer-coded PSO will be more suitable. Based on the
above analysis, we adopt a new discrete method first proposed by Pan et al. (2008). In our
application, different mutation operator and crossover operator are created to fit the OAEES
problem.

4.1.1. Position representation

The traditional idea on location planning is to find N optimal sites for siting a facility.
Different from this idea, in this article, the number and location of shelters are identified
through finding the optimal evacuation assignment scheme. One of the most important
issues in applying PSO algorithm to OAEES problem depends on associating particle posi-
tions with evacuation assignment schemes and relating them to the problem domain in an
efficient way.

The position of a particle can be expressed as an M-dimensional vector:

X = (x1, x2, . . . , xj, . . . , xM ) (8)

where xj denotes the jth (j = 1, 2,. . ., M , the same below) dimension of the position; M is
the total number of dimensions of the position.

In this article, the position of a particle X represents a candidate evacuation assignment
scheme, corresponding to a candidate shelter allocation scheme. The dimension of position
M represents the total number of communities. The value of jth dimension of the position
xj is the serial number of a candidate shelter where the residents of jth community are to
be assigned to.

The serial numbers of candidate shelters are consecutive integers and can be any inte-
ger between 1 and N . However, considering the distance constraint, it is obvious that the
jth community is only covered by several candidate shelters that are within a shelter’s max-
imum service distance, whose corresponding serial numbers are inconsecutive, that is, the
particles fly between a set of inconsecutive integers. To simplify the problem, we renumber
the candidate shelters that cover the jth community so that the particles can fly in a new set
of consecutive integers.

The renumbering process for candidate shelters is as follows:

(1) Calculating the shortest distance matrix

According to the geographic locations of communities and candidate shelters, based on
the evacuation route network, the real shortest distances between communities and candi-
date shelters, denoted as distance(j, i) (j = 1, 2,. . ., M ; i =1, 2,. . ., N), can be calculated.
Then, the shortest distance matrix DI = [distance (j, i) M × N ] is obtained (see Table 1).

(2) Calculating the coverage matrix

By comparing each element distance (j, i) of DI with the maximum service distance,
the coverage matrix Q = [q(j, i)M × N ] is obtained (see Table 2).
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International Journal of Geographical Information Science 1649

Table 1. The shortest distance matrix.

Communities

Candidate shelters 1 2 3 . . . M

1 733 663 450 . . . 733
2 152 426 395 . . . 447
3 409 984 709 . . . 303
. . . . . . . . . . . . . . . . . .
N 731 881 482 . . . 731

Table 2. The coverage matrix of candidate shelters.

Communities

Candidate shelters 1 2 3 . . . M

1 0 0 1 . . . 0
2 1 1 1 . . . 1
3 1 0 0 . . . 1
. . . . . . . . . . . . . . . . . .
N 0 0 0 . . . 0

The calculation rule is as follows:

If distance (j, i) ≤ 450, then q(j, i) = 1;
If distance (j, i) > 450, then q(j, i) = 0.

(3) Renumbering the candidate shelters

Let Num(j) denote the number of candidate shelters that cover the jth community (j =
1, 2,. . ., M); Cov(j) denote the set of candidate shelters that cover the jth community,
with kj as its index (kj = 1,2,. . ., Num(j)); New(kj) denote the new serial number of these
candidate shelters, with the index kj; and Ori(kj) denote the original serial number of these
candidate shelters, with the index kj.

The candidate shelters that cover the jth community are renumbered by a new set of
consecutive integers from 1 to Num(j), so that the particles can fly in this set of consec-
utive integers. The new serial numbers New(kj) of those candidate shelters are equal to
their corresponding index kj in Cov(j). Simultaneously, the new serial number New(kj) also
corresponds to a unique original serial number Ori(kj). For example, in Table 2, the three
candidate shelters numbered 2, 3, and 6 that cover Community 1 are renumbered as 1, 2,
and 3, respectively, as shown in Figure 1.

Through the renumbering process, all positions found by the particles comply with
the distance constraint and the search space is greatly reduced. The search range of xj is
re-identified as from 1 to Num(j) in the new set of consecutive integers.

4.1.2. Position update method

With the standard PSO algorithm, a particle’s behavior is a trade-off among three
directions, that is, at its own position, toward its personal best position, and toward the

D
ow

nl
oa

de
d 

by
 [

T
he

 S
ci

en
ce

 a
nd

 T
ec

hn
ol

og
y 

L
ib

ra
ry

 o
f 

G
ua

ng
do

ng
 P

ro
vi

nc
e]

 a
t 0

6:
58

 2
0 

Se
pt

em
be

r 
20

12
 



1650 F. Hu et al.

Community 1

Community 2

Community j

Community M

2, 3, 6 1, 2, 3
The 1st dimension

search space of particle

The 2nd dimension
search space of particle

The jth dimension
search space of particle

The Mth dimension
search space of particle

1, 2, 3,…, num(2)

1, 2, 3,…, num( j)

1, 2, 3,…, num(M)

2, 4, 7,…, N2

2, 3, 11,…, Nm

1, 3, 7,…, Nj

Original serial number New serial number

…

…

…

…

…

…

…

…

Figure 1. Conversion between original serial numbers and new serial numbers of candidate shelters
and the search space of each dimension of the particles.

best position of the particles in the whole swarm population. Therefore, the ath particle’s
position in the uth generation can be updated as follows (Pan et al. 2008):

Xa(u + 1) = c2 ⊗ F3
{
c1 ⊗ F2

[
w ⊗ F1 (Xa(u)) , X P

a (u)
]

, X G(u)
}

(9)

The position update is realized through the following three steps:

(1) In the first step, λa(u + 1) = w ⊗ F1 (Xa(u)) (λa is a D-dimensional variable and
λa = (λa1, λa2,. . ., λaj,. . ., λaD)), representing a particle’s inheritance of previ-
ous position and reflecting the particle’s confidence with current state of motion.
F1 represents the mutation operator for each dimension of the particles with the
probability of w. The mutation operator is performed as follows:

λaj (u + 1) =
{

x̂, if r < w
xaj (u), otherwise

(10)

Note that x̂ is integer∈ [1, num(j)] and x̂ �= xaj(u). The uniform number r is randomly
generated and is between 0 and 1.

(2) In the second step, δa(u + 1) = c1 ⊗ F2
(
λa(u + 1), X P

a (u)
)

(δa is a D-dimensional
variable and δa = (δa1, δa2,. . ., δaj,. . ., δaD)), representing the particle’s cognition,
that is, independent thinking of the particle itself. F2 represents the crossover oper-
ator with the probability of c1. If r is larger than c1 then δa(u + 1) = λa(u + 1),
otherwise λa(u + 1) and X P

a (u) will be the first and second parents for the crossover
operator, respectively. The crossover operator is performed as follows and two
offspring are generated:

δ1
aj (u + 1) =

{
λaj (u + 1), if j ≤ b

X P
aj (u), otherwise

(11)
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δ2
aj (u + 1) =

{
X P

aj(u), if j ≤ b
λaj (u + 1), otherwise

(12)

Note that b is the crossover position, which is an integer value between 1 and M − 1.

(3) In the third step, Xa(u + 1) = c2 ⊗ F3(δa (u + 1), XG(u)), representing the social
part of the particle, namely, the collaboration among particles. F3 represents the
crossover operator with the probability of c2. If r is larger than c2 then Xa(u + 1) =
δa(u + 1), otherwise δa(u + 1) and XG(u) will be the first and second parents for the
crossover operator, respectively. The crossover operator is the same as the second
step.

If neither the second step nor the third step implemented the crossover operator, then
only one offspring is generated; if only one step implemented the crossover operator, then
two offspring are generated; if the crossover operator was implemented twice, then four
offspring are generated. For the two latter cases, one of the offspring is chosen randomly
as a new position with an equal probability.

The position update method used in this article is suitable for the discrete optimization
problem due to a number of remarkable advantages. First, the position of a particle is a
rational integer value throughout the whole update process, which makes it convenient to
map a particle’s position to an evacuation assignment scheme. Second, the mutation and
crossover operators are employed to maintain the diversity of particles in swarm population
so that the global search ability of the algorithm is enhanced. Moreover, the direction of a
particle’s evolution is toward its personal best position and toward the best position in the
whole swarm, which accelerates the convergence of the particles. In addition, it need not
consider the velocity of a particle.

4.1.3. Parameter selection

4.1.3.1. Population size. Population size has much influence on the convergence and
computation of the PSO algorithm. If a population size is too large, the algorithm will
take a long time to calculate; if it is too small, the algorithm will easily converge to local
optima. For general optimization problems, the algorithm achieves best solution when the
population size is between 30 and 50 (Kennedy and Eberhart 1995).

4.1.3.2. Initialization of position. In the new set of consecutive integers, the initial posi-
tion of the ath particle on each dimension, denoted as Xaj (0), is given by Formula
(13):

Xaj (0) = INT(r × num (j) + 1) ∀j = 1, 2, . . . , M ∀a = 1, 2, . . . , A (13)

where r denotes the random decimal between 0 and 1 and INT is the function for deriving
the integer value.

4.1.3.3. Mutation probability. The mutation probability is equal to the inertia weight in
standard PSO, whose change strategy is given by Shi and Eberhart (1999):
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ω = 0.9 − 0.9 − 0.4

U
× u (14)

where ω denotes the mutation probability; U denotes the maximum number of generations
and u denotes the current generation. ω decreases linearly with the increasing number of
generations. At the beginning of the run, ω should be of a high value to render higher
global search capability, whereas at the end of the run, ω should be of a low value to give
higher local search capability. So ω can balance exploration and exploitation by controlling
the impact of previous velocity on current velocity.

4.1.3.4. Crossover probabilities. From the sociopsychological point of view, individ-
ual cognition and social interaction play significant parts in learning (Yin et al. 2007).
Crossover probabilities are equal to the learning factors in standard PSO, which determine
the influences of a particle’s own experiment and the social experiment on the trajectory
of particles. In this article, crossover probabilities c1 and c2 are both assigned the same
constant value 0.5.

4.1.3.5. Maximum number of generations. The procedure of PSO algorithm calculation
will stop at a specified maximum number of generations (Eberhart and Shi 2001, Naka
et al. 2003) that is determined experimentally. The experiment can start at 100 with an
increment of 50 and stop at 1000. We consider the algorithm has converged and obtain
the parameter value when the global optimum has not changed for a specified number of
generations (Jin et al. 2007), for example, 300.

4.2. Combining with the feasibility-based rule

The model for the OAEES problem includes distance constraint and capability constraint.
The first constraint is solved in Section 4.1.1 and the second constraint will be tackled by
a constraint-handling technique. Penalty function approach is the most popular constraint-
handling technique because it is simple and easy to implement. But its shortcoming lies in
setting the suitable penalty parameter. To remedy this drawback, other methods have been
developed. Deb (2000) proposed penalty parameter-less approach with infeasible solutions
compared only according to constraint violations (CVs). But when the maximum of OFV
and CVs have different orders of magnitude, it is difficult to find the optimal solution.
He and Wang (2007b) proposed a co-evolutionary PSO algorithm, where two types of
swarms representing solutions and penalty parameters evolve interactively. But this method
requires a priori knowledge of the domain of penalty parameter and a large number of fit-
ness evaluations that are costly. Deb and Datta (2010) combined a bi-objective evolutionary
approach and penalty function method. But this method is sensitive to the domain definition
of feasible solutions.

Through the analysis of these existing techniques, we chose the feasibility-based rule
proposed by He and Wang (2007a) to solve the OAEES problem.

Solution evaluation mainly depends on the OFV and capability CV. The OFV can be
calculated by the following equation:

OFV =
N∑

i=1

Yi ∀i = 1, 2, . . . , N (15)
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And the capability CV can be calculated as follows (note that CV is normalized to
avoid the influence of orders of magnitude):

CV =
{

0, if g ≤ 0
g

gmax
, if g ≥ 0

(16)

g =
N∑

i=1

⎛
⎝ M∑

j=1

PjLBji − SiY i

⎞
⎠ , ∀i = 1, 2, . . . , N ; ∀j = 1, 2, . . . , M (17)

The feasibility-based rule is used to evaluate any solutions and guides the particle update,
described as follows (He et al. 2007a):

(1) Any feasible solution is preferred to any infeasible solution.
(2) Between two feasible solutions, the one having better OFV is preferred.
(3) Between two infeasible solutions, the one having smaller CV is preferred.

According to this rule, the penalty parameters are not employed by considering OFVs
and CVs separately (He et al. 2007a). Moreover, the search direction is toward the feasible
region in the first and third cases and toward good solutions of feasible region in the sec-
ond case, which makes the search algorithm find good feasible solutions in a short time.
In addition, compared with other constraint-handling techniques, the feasibility-based rule
is simple and easy to understand and implement.

4.3. Incorporation of SA algorithm

While the feasibility-based rule can guide particles to find good feasible solutions quickly,
strictly complying with the rule leads to premature convergence. SA is incorporated to
offset this drawback. SA, a famous meta-heuristic local search algorithm, can effectively
avoid premature convergence and focus computing effort upon the most promising solu-
tions. First introduced by Kirkpatrick et al. (1983), SA can be seen as an analog of an
algorithm employed in statistical physics for imitating the solids’ annealing procedure that
is similar to the tactic for solving optimization problems (van Laarhoven et al. 1992). SA
not only accepts the better solutions but also accepts worse solutions with certain proba-
bilities (Hasan and Osman 1995), so that it can escape from the local optima and balance
between exploration and exploitation.

The conventional way of incorporating SA into PSO is to apply SA as a local search for
global optimum in the whole swarm (Zhao et al. 2007, Liu et al. 2008, Niknam et al. 2009).
Different from that approach, in this article, we use SA as a local search for each particle’s
local optimum, which can enlarge information throughput and find better solutions.

In SA, T0 denotes initial temperature, which is usually assigned a high value;
Tu denotes the temperature in the uth generation; Tmin denotes the minimum tem-
perature; K denotes the annealing rate; Xa(u) denotes the position of the ath particle
in the uth generation and sumZa(u) denotes its OFV and sumGa(u) denotes its CV;
XPa(u) denotes the position of local optimum currently acquired by the ath particle and
sumZpa(u − 1) denotes its OFV and sumGpa(u − 1) denotes its CV; Prob denotes the
acceptable probability of a newly generated position; ε denotes the uniform randomly
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generated number, which is between 0 and 1. The local searching process for each parti-
cle’s local optimum can be controlled by the cooling schedule (Aerts and Heuvelink 2002,
Li et al. 2010).

The implementation of SA combining with the feasibility-based rule is in two steps.
Step1:

For each particle’s newly generated position in each generation:

(1) If sumGa(u) = 0 and sumGpa(u−1) > 0, then prob = 1

(2) If sumGa(u) > 0 and sumGpa(u−1) = 0, then prob = 0

(3) If sumGa(u) = 0 and sumGpa(u−1) = 0, then

�E = sumZa(u)−sumZpa(u−1), prob = min{1,exp[�E/Tu]}

(4) If sumGa(u) > 0 and sumGpa(u−1) > 0, then

�E = sumGa(u)− sumGpa(u−1), prob = min{1,exp[�E/Tu]}

In cases (3) and (4),
If prob = exp[�E/Tu], then Tu = K×Tu−1, otherwise Tu = Tu−1

If Tu<Tmin, then Tu = Tmin

Step 2:

If prob < ε, then sumGpa(u) = sumGa(u); sumZpa(u) = sumZa(u); XPa(u) = Xa(u)
otherwise sumGpa(u) = sumGpa(u−1); sumZpa(u) = sumZpa(u−1); XPa(u) = Xa(u−1)

Therefore, the flow of the modified PSO algorithm is as in Figure 2:

5. Case study

5.1. Study area

Guangzhou, the capital city of the Guangdong Province in China, is the center of the Pearl
River Delta economic zone. Although no catastrophic earthquake has occurred in recorded
history, the city was built on several earthquake faults where destructive earthquakes have
occurred in the past (Ou et al. 2008). Meanwhile, Guangzhou is a densely populated city
with highly developed economy. Therefore, the city is at high risk of earthquake losses.
Many instances have proved that shelter provision would greatly help to reduce casualties
during natural disasters such as an earthquake (Yi and Ozdamar 2007). Presently, only
three long-term shelters have been built in Guangzhou, which are distant from the local
communities and capable of providing refuge services for only about 60,000 people, far
short of the current refuge demand. Hence, it is important to plan emergency shelters before
an earthquake strikes the region. In this research, Zhuguang Block in the south of the
Yuexiu District in Guangzhou was selected as the case study area. It is at 113◦16′E and
23◦7′N and comprises 18 administrative communities, with a total area of 0.89 km2. The
total population was 71,672 and the population density was 80,530 persons/km2 in 2006.

5.2. Data preprocessing

5.2.1. Candidate shelter data

Open spaces in the study area such as parks, playgrounds, and green spaces can be viewed
as candidate shelters. The candidate shelter sites were interpreted from a Landsat TM
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Begin

Initialize the positions of particles and each particles’s
local optimum with a copy of the initial position

Evaluate each particle

Update each particle’s local optimum
according to the feasibility-based rule

Employ SA to each particles’s
local optimum for local search

Update global optimum according
to the feasibility-based rule

Is the maximum number
of generations reached?

Output the global
optimum

Update the position
of each particle

No

Yes

Discrete Method

Figure 2. The flow diagram of modified PSO algorithm.

image (pixel size 30 m × 30 m, acquired on 23 November 2005, downloaded at http://
glcfapp.glcf.umd.edu).

5.2.2. High-risk candidate shelter elimination

Slope was calculated through the Digital Elevation Model (DEM) data downloaded at
http://glcfapp.glcf.umd.edu. Data on earthquake fault zones were acquired from Ou et al.
(2008), and disaster-prone areas were identified by the Geological Disaster Prevention
Program of Yuexiu District in 2008. Based on these data, the open spaces with high risk,
that is, those with slopes greater than 20◦, less than 500 m away from earthquake fault
zones, and less than 500 m away from disaster-prone areas, were excluded from the list of
candidate shelters.

5.2.3. Estimate the local population in each community

The population size of Zhuguang Block was extracted from the Economic and Social
Development Statistics Yearbook of the Yuexiu District of Guangzhou in 2007. Assuming
that the population of the Zhuguang Block is evenly distributed in its built-up areas, the
population of each community can be calculated by Formula (18):
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PJj = SJj

SR
× PR (18)

where PJj denotes the population of the jth community; SJj denotes the built-up area of
the jth community; PR denotes the population of the Zhuguang Block; and SR denotes the
total built-up area of the Zhuguang Block, interpreted from the TM image.

5.2.4. Calculating the distances between shelters and communities

The evacuation route data layer was acquired by digitizing the city center map of
Guangzhou (Xi’an Map Press 2009). In ARCGIS 9.3, based on the actual evacuation
routes, the computational procedure of the distances between communities and shelters (all
represented by their central points) was as follows: First, let the routes share the same node
where they intersect, as in Figure 3. Then the evacuation route network connectivity was
constructed by the ‘any vertex’ connectivity policy. Finally, the distances were calculated
by the OD Cost Matrix of the Network Analysis module.

5.3. Results and analysis

To solve the OAEES problem, the modified PSO algorithm is employed. In this modified
PSO, three types of algorithms as shown in Table 3 are explored, with the aim of comparing
different discrete methods and constraint-handling techniques, as well as testing the local
search effectiveness of SA. Meanwhile, the parameters of SA are studied. All computer
programs used in this research were developed on the VB developer platform, combin-
ing with secondary development of the MapObject components in geographic information
system. The experimental environment was an Intel Core2 2.1 GHz PC with 2GB
memory.

Figure 4 and Table 4 present the result of shelter allocation based on the competing
algorithms. In Figure 4, the green polygons represent the candidate shelters, distributed
throughout the whole block; the red spots represent residents in the corresponding com-
munity; the blue lines represent the actual evacuation route network; and the red straight
lines that link communities and emergency shelters display the final evacuation assignment
scheme.

Table 4 indicates that the modified PSO algorithm obtains the best feasible solutions
with relatively small OFV. By a systematic procedure of trial and error, all parameters of
competing algorithms are determined (Table 5). We will analyze all competing algorithms
in detail.

Node

Route

Route Node

Figure 3. Node sharing between routes that intersect.
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Table 3. Hybridization among various algorithms.

Discrete method Constraint-handling techniques
The local search

mechanism of SA

Hybridization NDPSO

Round-
based
DPSO GA

Feasibility-
based
rule

Penalty
parameter-

less
approach

Penalty
function
approach

SA for
guiding

local best
update

SA for
guiding
global
best

update

A1 ◦ ◦ ◦
A2 ◦ ◦ ◦
B1 ◦ ◦ ◦
B2 ◦ ◦ ◦
C1 ◦ ◦
C2 ◦ ◦ ◦
D ◦ ◦ ◦
Notes: NDPSO, new discrete particle swarm optimization; GA, genetic algorithm; SA, simulated annealing.
◦ denotes that the method is included in the corresponding hybridization algorithm.

5.3.1. The comparison between different discrete methods

Three algorithms involving different discrete methods (the rounding-based DPSO
algorithm hybridized with feasibility-based rule and SA (A1), GA hybridized with
feasibility-based rule and SA (A2), NDPSO hybridized with feasibility-based rule and
SA (D)) were compared. Changes of OFV and CV in the generation process of the three
algorithms are displayed in Figure 5.

The CVs obtained by A1 and A2 did not converge to zero, that is, all solutions obtained
by these two algorithms are infeasible solutions. By contrast, the solution obtained by D
is feasible. A1 always found the discrete solution nearest to the real optimal value, so it
is difficult to reach the optimal yet feasible solution. GA in A2 is widely regarded as an
appropriate method for discrete optimization problems because it can be coded directly
using discrete variable. But its search direction is not clear compared with D, leading to
low convergence speed and difficulty in finding the optimal solution. D can let all particles
fly in a rational integer value domain. Meanwhile, the mutation and crossover operators
maintain the diversity of particles. Therefore, it is obvious that D is more suitable for the
discrete optimization problem.

5.3.2. The comparison between different constraint-handling techniques

Three algorithms involving different constraint-handling techniques (NDPSO hybridized
with penalty function approach and SA (B1), NDPSO hybridized with penalty
parameter-less approach and SA (B2), and D) were compared. Changes of CV in the
generation process of the three algorithms are illustrated in Figure 6.

In B1, the penalty parameter is assigned the value of 150 by the trial and error proce-
dure. Figure 6 shows that the convergence speed of B1 is faster than that of B2, and the CV
of its optimal solution is lower than that of B2. But all solutions found by B1 are infeasible
because B1 is sensitive to the penalty parameter. The fitness function in B2 is composed of
maximum OFV and CV when the solutions are infeasible. As shown in Figure 6, in B2 par-
ticles fly toward the feasible region at a fast speed in the beginning, but the movement is at a
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1658 F. Hu et al.

Figure 4. Optimal allocation results of earthquake emergency shelters in the Zhuguang Block based
on the completing algorithms. (A1) Result based on the rounding-based DPSO algorithm hybridized
with feasibility-based rule and SA. (A2) Result based on GA hybridized with feasibility-based rule
and SA. (B1) Result based on the NDPSO algorithm hybridized with penalty function approach and
SA. (B2) Result based on the NDPSO algorithm hybridized with penalty parameter-less approach and
SA. (C1) Result based on the NDPSO algorithm hybridized with feasibility-based rule. (C2) Result
based on the NDPSO algorithm hybridized with feasibility-based rule and SA for global optimum.
(D) Result based on the NDPSO algorithm hybridized with feasibility-based rule and SA for local
optimum.
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Table 4. The result of the competing algorithms.

The hybrid
algorithms

Objective
function value Constraint violation

Penalty
function

value
The number of

evaluation functions

A1 14 0.00048 – 20,000
A2 12 0.24746 – 40,000
B1 14 0.00878 15.31759 30,000
B2 15 0.00286 15.00286 20,000
C1 15 0.00000 – 20,000
C2 13 0.00000 – 20,000
D 12 0.00000 – 20,000

Table 5. The parameter setting of the competing algorithms.

The hybrid
algorithms

Maximum
number of
generation

Population of
swam

Initial
temperature Annealing rate

Minimum
temperature

A1 500 40 100,000 0.25 0.01
B1 750 40 10,000 0.65 0.01
B2 500 40 10,000 0.95 0.01
C1 500 40 – – –
C2 500 40 100,000 0.75 0.01
D 500 40 100,000 0.96 0.01

The hybrid
algorithm

Maximum
number

of generation

Population
of swarm

Crossover
probability

Mutation
probability

Selection
strategy

A2 500 40 0.95 0.01 Tournament
selection

0.974

CV

0.123

0.016

0.002

0.000
0 100 200 300

Generation

400 500

CV obtained by D

CV obtained by A1

CV obtained by A2

Figure 5. Changes of constraint violation (CV) of A1, A2, and D.
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0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

CV

0 100 200 300
Generation

400 500

CV obtained by B1

CV obtained by B2

CV obtained by D

Figure 6. Changes of constraint violation (CV) of B1, B2, and D.

standstill when the CV becomes very small, because the difference of their orders of magni-
tude leads to difficulty in finding the optimal solution. In D, OFVs and CVs are considered
separately. The feasibility-based rule prefers the solution with smaller CV; therefore, it
guides the particles to find the feasible solution quickly. Figure 6 indicates that the optimal
solution found by D is feasible and is better than that of B1 and B2.

5.3.3. Local search effectiveness of SA

Three algorithms (NDPSO hybridized with feasibility-based rule only (C1), NDPSO
hybridized with feasibility-based rule and SA for global best update (C2), and D) were
compared in order to evaluate the local search effectiveness of SA. Changes of OFV and
CV in the generation process of these three algorithms are illustrated in Figures 7 and 8.

17
OFV

16

15

14

13

12

11
0 100 200 300

Generation

400 500

OFV obtained by D

OFV obtained by C1

OFV obtained by C2

Figure 7. Changes of objective function value (OFV) of C1, C2, and D.
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0 100 200 300
Generation

400 500

0.060

0.010

0.002

0.000

CV obtained by D

CV obtained by C1

CV obtained by C2

CV

Figure 8. Changes of constraint violation (CV) of C1, C2, and D.

Figure 7 clearly indicates that the effectiveness of C2 and D is better than C1 due to the
incorporation of the SA mechanism. C1 eventually finds good feasible solutions by strictly
complying with the feasibility-based rule. Although C1 can ensure to find feasible solu-
tions, it can easily be trapped into a certain feasible solution that is only a local optimum.
By combining with SA, the search scopes of C2 and D become larger, bringing the hope
of finding the most promising solutions. Figure 8 shows that C2 and D find the feasible
solutions faster than C1. In Figure 7, the OFVs of optimal solutions found by C2 and D are
also better than that of C1. D has better search ability than C2 because SA is employed as
a local search for each particle’s local optimum and enlarges more information through-
put in D. In Figure 8, C2 finds the feasible solutions faster than D. With the increase of
generation, Figure 7 shows that the OFVs of solutions obtained by D are better than that
of C2.

5.3.4. Parametric study of SA

The local search effectiveness of SA depends on setting appropriate initial temperature
(T0), annealing rate (K), and minimum temperature (Tmin). We used the trial and error
method in a parametric study.

We set Tmin = 0.01 and T0 = 10,000, 100,000, 1,000,000, and 10,000,000, and changed
K from 0.01 to 0.99 by an increment of 0.01. Changes of OFVs of the modified PSO
algorithm are shown in Figure 9 (only the feasible solutions are included in the figure).
From Figure 9, it is easy to see that the algorithm obtains the best solution when T0 =
10,000, K = 0.94; T0 = 100,000, K = 0.92, 0.96, 0.97; and T0 = 1,000,000, K = 0.92.

In addition, we set T0 = 100,000 and Tmin = 0.1, 0.01, 0.001, and 0.0001, and changed
K from 0.01 to 0.99 by an increment of 0.01. Changes of the OFVs of the modified PSO
algorithm are shown in Figure 10 (only the feasible solutions are included in the figure).
From Figure 10, it is also easy to see that the algorithm obtains the best solution when Tmin

= 0.1, K = 0.96; Tmin = 0.01, K = 0.92, 0.96, 0.97; Tmin = 0.001, K = 0.62∼0.76; and
Tmin = 0.001, K = 0.92, 0.93, 0.95, 0.96.
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0 0.2 0.4 0.6 0.8 1

T0 = 10,000 T0 = 100,000 T0 = 1,000,000 T0 = 10,000,000

OFC

Figure 9. Changes of the objective function values (OFVs) of the proposed modified PSO algorithm
with the annealing rate from 0.01 to 0.99 by a 0.01 increment, when the minimum temperature is
0.01 and initial temperature is 10,000, 100,000, 1,000,000, and 10,000,000.

16

15

14

13

12
0 0.2 0.4 0.6 0.8 1

Tmin = 0.1 Tmin = 0.01 Tmin = 0.001 Tmin = 0.0001

OFC

Figure 10. Changes of the objective function values (OFVs) of the proposed modified PSO algo-
rithm with the annealing rate from 0.01 to 0.99 by a 0.01 increment, when initial temperature is
100,000 and minimum temperature is 0.1, 0.01, 0.001, and 0.0001.

5.3.5. The optimal allocation solution obtained by the proposed modified PSO algorithm

Table 6 shows the result of earthquake emergency shelter allocation in the Zhuguang Block
based on the modified PSO algorithm. The shelters whose original serial numbers are 2, 4,
6, 7, 9, 10, 12, 14, 15, 17, 19, and 20 were selected and the evacuation assignment scheme
was simultaneously identified. For example, the 1st community and the 14th community
are assigned to the 2nd shelter and the 2nd community is assigned to the 7th shelter.

In Table 6, the capacity satisfaction index (CSI) for shelters is a measure of the
satisfaction level of resident demands for shelters, calculated by Formula (19):

CSIi = ASi

PCSi × L
∀i = 1, 2, . . . , N (19)
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Table 6. The location planning result of earthquake emergency shelters in the Zhuguang Block.

Community Population Shelter Valid refuge area (m2)

Capacity
satisfaction index

for shelter (%)

1 3637 2 7858 100
14 3593
2 3408 7 3897 100
3 3310 14 6920 100
18 3135
4 3031 9 9441 100
8 3918
9 2406
5 4290 20 9167 100
17 4834
6 5709 17 6869 100
7 3812 12 7478 100
16 3334
10 4205 15 4242 100
11 3624 4 3859 100
12 5775 10 6013 100
13 4595 6 5884 100
15 5058 19 5323 100

where CSIi denotes CSI for the ith shelter; ASi denotes the area of the ith shelter; PCSi

denotes the total population of communities served by the ith shelter; and L denotes the
least refuge area per capita.

The CSIs of all selected shelters reached 100%, which confirms that the optimal allo-
cation solution has satisfied the capacity constraint. By applying procedures presented
in Section 4.1.1, all the candidate shelters have also satisfied the distance constraint.
Therefore, the result of shelter allocation in the Zhuguang Block is valid. The experiment
also shows that the modified PSO algorithm can identify the number and locations of
emergency shelters through finding the optimal evacuation assignment scheme.

6. Conclusion

The main merit of this research is the introduction of the PSO algorithm into the field of
geographic optimization. We effectively solved the complicated OAEES problem using the
modified PSO algorithm. Three important methods have been hybridized: (1) An NDPSO
algorithm was employed for solving the integer programming problem, (2) the feasibility-
based rule was used to handle the constraint problem, and (3) an SA algorithm had been
hybridized to enhance search capability.

This study has demonstrated that the modified PSO algorithm that hybridized NDPSO,
the feasibility-based rule, and the SA outperforms other hybrid algorithms reviewed in this
article. Compared with the rounding-based DPSO, the NDPSO lets all particles fly in a
rational integer value domain and the particles’ diversity was maintained by the mutation
and crossover operators. In comparison with GA, with the NDPSO each particle has search
directions toward its personal best and global best, making the algorithm converge to the
optimal solution fast. Penalty function approach is sensitive to the penalty parameter and
penalty parameter-less approach easily leads the particles to a standstill when CV becomes
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very small. Comparatively, the feasibility-based rule prefers the solution with smaller CV,
guiding particles to find feasible solutions quickly. So the NDPSO and the feasibility-based
rule are suitable methods for handling the discrete and constrained optimization problems.
Hybridizing with SA leads to the improvement of search ability by avoiding jumping into
local optima. Additionally, SA as a local search for global optimum and SA as a local
search for each particle’s local optimum have been compared. The latter converges to better
feasible solution due to the increase of information throughput.

The model for the OAEES problem not only takes distance and capacity constraints
into consideration but also emphasizes cost saving of shelters. The result in the case study
is feasible, in which all selected shelters complied with the two constraints. Therefore, the
modified PSO algorithm is viable for solving the OAEES problem.

Our modified PSO algorithm can be applied to other complex geographic optimization
problems, such as allocation of emergency supplies and other emergency facility site selec-
tion. The model is also useful for other types of disaster shelter allocation such as hurricane
shelters and typhoon shelters.

In our model, a number of complicated factors have been simplified. For example, pop-
ulation of a community is assumed to be concentrated at its central point and the impact
of collapsed houses on evacuation paths is ignored. These issues will be the target of our
future research. However, PSO, with its strong adaptability and computational capabil-
ity, has the potential to be further developed to fit more complex geographic optimization
problems.
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